2002 Vol. 4, No. 3 375-378

Synthesis of 5-Pyridyl-2-furaldehydes via Palladium-Catalyzed Cross-Coupling with Triorganozincates

Donald R. Gauthier, Jr.,* Ronald H. Szumigala, Jr., Peter G. Dormer, Joseph D. Armstrong, III, R. P. Volante, and Paul J. Reider

Department of Process Research, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065

donald gauthier@merck.com

Received November 16, 2001

ABSTRACT

5-Pyridyl- and 5-aryl-2-furaldehydes are prepared from furaldehyde diethyl acetal in a four-step, one-pot procedure: (i) deprotonation; (2) Li to Zn transmetalation; (3) Pd-mediated cross-coupling; (4) aldehyde deprotection. Triorganozincate 7 was found to transfer all three groups in the Pd-catalyzed cross-coupling reaction with haloaromatics.

Substituted furans are ubiquitous structural units in natural products and in pharmaceuticals¹ and have often been used as synthetic intermediates.² We are interested in 5-pyridyl-2-furaldehydes as synthetic intermediates for pharmaceutically active compounds. Herein we report a scaleable, operationally simple procedure to prepare 5-aryl- and 5-pyridyl-2-furaldehydes from inexpensive, commercially available 2-furaldehyde diethyl acetal.³ We also report that triorgano- and tetraorganozincates transfers all organic groups in the Pd-catalyzed cross-coupling reaction with aryl halides.

Several transition metal catalyzed biaryl coupling approaches to 5-pyridyl-2-furaldehydes were considered. The ease in which substitution can be incorporated at the 2- and 5-positions made this approach more attractive than cyclization of acyclic precursors.⁴ Although 2-halofurans are suitable biaryl coupling partners,⁵ the prohibitive cost of the requisite

5-bromo-2-furaldehyde⁶ precluded its use on large scale. Thus, we focused instead on using furaldehyde as the nucleophilic component. In a recent report, this strategy was employed using a Heck coupling to prepare 5-aryl-2-furfurals; unfortunately, 2-halopyridines were poor substrates.⁷ O'Doherty recently focused on Stille and Negishi couplings to prepare 5-aryl-2-furfurals.⁵ A similar approach to 5-pyridyl-2-furaldehydes using a one-pot, four-step sequence is illustrated in Scheme 1: (i) selective deprotonation of furaldehyde diethyl acetal (1); (ii) transmetalation to an organometallic nucleophile capable of undergoing transition metal catalyzed cross-coupling; ⁸ (iii) cross-coupling; (iv) aldehyde deprotection.

⁽¹⁾ Keay, B. A.; Dibble, P. W. In *Comprehensive Heterocyclic Chemistry II*; Bird, C. W., Ed.; Elsevier: New York, 1996; Vol. 2, Chapter 2.08, pp 395–436.

^{(2) (}a) Lipshutz, B. H. *Chem. Rev.* **1986**, 86, 795–819. (b) Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y.; Wong, H. N. C. *Tetrahedron* **1998**, *54*, 1955–2020.

⁽³⁾ Available from Aldrich Chemical Co. at \$147/25 g, although the cost of raw material 2-furaldehyde is comparable to common solvents.

^{(4) (}a) Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y.; Wong, H. N. C. *Tetrahedron* **1998**, *54*, 1955–2020. (b) Keay, B. A. *Chem. Soc. Rev.* **1999**, *28*, 209–215. (c) Friedrichsen, W. In *Comprehensive Heterocyclic Chemistry II*; Bird, C. W., Ed.; Elsevier: New York, 1996; Vol. 2, Chapter 2.07, pp 352–368.

⁽⁵⁾ Balachari, D.; Quinn, L.; O'Doherty, G. A. Tetrahedron Lett. 1999, 40, 4769-4773.

⁽⁶⁾ Available from Aldrich Chemical Co. at \$11/1 g. For selective bromination of 2-furaldehyde, see: Nazarova, Z. N. J. Gen. Chem. (U.S.S.R.) 1954, 24, 589–592.

⁽⁷⁾ McClure, M.; Glover, B.; McSorley, E.; Millar, A.; Osterhout, M.; Roschangar, F. *Org. Lett.* **2001**, *3*, 1677–1680.

Scheme 1. Four-Step, One-Pot Synthesis of 5-Pyridylfuraldehydes^a

^a Reagents and conditions: (a) n-BuLi, THF, TMEDA, -25 °C; (b) ZnCl₂, -25 °C to rt; (c) 2-chloropyridine (**9a**), Pd(dppf)Cl₂, 6 h, 50 °C; (d) 5 N HCl.

The deprotonation of furaldehyde diethyl acetal 1 in THF with n-BuLi is selective at -78 °C, providing furyllithium 2 (Scheme 1). 9,10 The extreme cryogenics of the deprotonation could be avoided with the addition of N, N, N', N'-tetramethylethylenediamine (TMEDA). Using TMEDA, the deprotonation and subsequent transmetalation steps could be conducted at -20 to -30 °C. 12,13

Organozinc reagents have seen widespread use due to exceptional functional group tolerance, ease of preparation, and removal of zinc byproducts. ¹⁴ Treatment of **2** with ZnCl₂ (1.1 equiv) provided organozinc chloride **3**. Several catalysts derived from Ni and Pd were screened to optimize the reaction of **3** with 2-chloropyridine (**9a**). Pd(dppf)Cl₂ ¹⁵ (2 mol %) gave the best results, providing **5a** in 90% yield after deprotection. For kilogram-scale runs, catalyst loading was reduced to 0.25 mol % without adverse effects on yield or reaction time.

Commercial bulk sources of "anhydrous" ZnCl₂ solid typically contain no less than 1% H₂O.¹⁶ Dissolution in THF and extensive molecular sieve drying was therefore necessary.¹⁷ For this reason, as well as reducing the overall reaction

(8) For synthetic routes to biaryls, see: (a) Stanforth, S. P. *Tetrahedron* **1999**, *54*, 263–303. (b) Knight, D. W. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 3, pp 481–516.

(9) (a) Thames, S.; Odom, H. *J. Heterocycl. Chem.* **1966**, *3*, 490–494. (b) Comins, D. L.; Killpack, M. O. *J. Org. Chem.* **1987**, *52*, 104–109.

(10) The deprotonation step was monitored by HPLC by the following method: an aliquot of solution 2 was quenched with MeI. HPLC typically showed 95% conversion to 2 compared to authentic standards of furaldehyde and 5-methyl-2-furaldehyde.

(11) Collum, D. B. Acc. Chem. Res. 1992, 25, 448-454.

(12) Furyllithium **2** was stable in THF with TMEDA at -20 °C for several hours. Aging at higher temperatures (e.g., -10 °C, 1 h) resulted in diminished yields of coupled product **5a** (54%).

(13) Without TMEDA, unidentifiable decomposition occurs upon aging the solution of $\bf 2$ above -40 °C.

(14) (a) Knochel, P.; Jones, P. Organozinc Reagents, A Practical Approach; Oxford University Press Inc.: New York, 1999. (b) Erdik, E. Organozinc Reagents in Organic Synthesis; CRC Press: Boston, 1996.

(15) Hayashi, T.; Konishi, M.; Kobori, Y.; Kumada, M.; Higuchi, T.; Hirotsu, K. J. Am. Chem. Soc. 1984, 106, 158–163.

(16) Kilogram quantities of solid $ZnCl_2$ can be oven dried at 120 °C, 23 in. Hg with an N_2 purge for 3–5 days. However, handling of a THF solution on scale is preferred to the hygroscopic solid.

(17) Commercial ZnCl₂ solution ($\dot{0}$.5 M in THF, Aldrich Chemical Co.) contains 0.5% H₂O (\sim 0.3 M) as determined by Karl Fisher titration.

volume and the amount of transition metal reagents, ¹⁸ we aimed to minimize the amount of ZnCl₂. Thus, diorganozinc **6** was initially prepared by simply adjusting the ratio of reagents (Figure 1). Using the appropriate furyllithium **2**/ZnCl₂ stoichiometry, organozincate **7** (3:1) and higher order zincate **8** (4:1) were also prepared.

Figure 1.

Diorganozincs are more reactive than organozinc halides toward electrophiles and sometimes transfer only one of the two groups.¹⁹ In cross-coupling reactions, diorganozincs generally transfer both organic groups.²⁰ Mixed aryl—dialkyl zincates have been shown to selectively transfer an aryl group to an electrophile.^{21,22} We report here that triorganozincate 7 transfers all three organic groups in the cross-coupling reaction with 2-chloropyridine (9a) and is equally efficient as mono and bis organozincs 3 and 6 (Table 1, entries 1 and 4). However, slightly lower yields were typically obtained with higher order zincate 8 (Table 1, entry 5). We ascribe the lower yields with higher order zincate 8 to its lower thermal stability compared to that of 6 and 7.²³

The optimized coupling procedure was applied using organozinc reagents 6 and 7 with chloropyridines 9a-g (Table 1). Since we mainly were interested in chloropyridines, the coupling reaction was also conducted using the

(22) For interesting applications of zincates and higher order zincates, see: (a) Harada, T.; Kaneko, T.; Fujiwara, T.; Oku, A. *J. Org. Chem.* 1997, 62, 8966–8967. (b) Harada, T.; Katsuhira, T.; Osada, A.; Iwazaki, K.; Maejima, K.; Oku, A. *J. Am. Chem. Soc.* 1996, 118, 11377–11390. (c) Harada, T.; Otani, T.; Oku, A. *Tetrahedron Lett.* 1997, 38, 2855–2855. (d) Harada, T.; Katsuhira, T.; Hara, D.; Kotani, Y.; Maejima, K.; Kaji, R.; Oku, A. *J. Org. Chem.* 1993, 58, 4897–4907. (e) Katsuhira, T.; Harada, T.; Maejima, K.; Osada, A.; Oku, A. *J. Org. Chem.* 1993, 58, 6166–6168. (f) Harada, T.; Hara, D.; Hattori, K.; Oku, A. *Tetrahedron Lett.* 1988, 29, 3821–3824. (g) Oku, A.; Harada, T.; Hattori, K.; Nozaki, Y.; Yamaura, Y. *J. Org. Chem.* 1988, 53, 3089–3098. (h) McWilliams, J. C.; Armstrong, J. D., III; Zheng, N.; Bhupathy, M.; Volante, R. P.; Reider, P. J. *J. Am. Chem. Soc.* 1996, 118, 11970–11971. (i) Uchiyama, M.; Kameda, M.; Mishima, O.; Yokoyama, N.; Koike, M.; Kondo, Y.; Sakamoto, T. *J. Am. Chem. Soc.* 1998, 120, 4934–4946.

(23) Yield of coupled product $\bf 5a$ was significantly lower after aging $\bf 8$ at 25 °C for 1 h.

376 Org. Lett., Vol. 4, No. 3, 2002

^{(18) (}a) Trost, B. M. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 259–281. (b) Anastas, P. T.; Warner, J. C. *Green Chemistry*; Oxford University Press Inc.: New York, 1998, Chapter 4.

^{(19) (}a) Knochel, P. Synlet **1995**, 393–403. (b) Soai, K.; Niwa, S. Chem. Rev. **1992**, 92, 833–856. (c) Knochel, P.; Singer, R. D. Chem. Rev. **1993**, 93, 2117–2188.

⁽²⁰⁾ This distinction is sometimes overlooked. See, for example: Perez, I.; Sestelo, J.; Sarandeses, L. *J. Am. Chem. Soc.* **2001**, *123*, 4155–4160

^{(21) (}a) Kondo, Y.; Shilai, M.; Uchiyama, M.; Sakamoto, T. *J. Am. Chem. Soc.* **1999**, *121*, 3539–3540. (b) Kondo, Y.; Komine, T.; Fujinami, M.; Uchiyama, M.; Sakamoto, T. *J. Comb. Chem.* **1999**, *1*, 123–126. (c) Kondo, Y.; Takazawa, N.; Yamazaki, C.; Sakamoto, T. *J. Org. Chem.* **1994**, *59*, 4717–4718.

Table 1. Synthesis of 5-Substituted Pyridylfurals via Pd-Catalyzed Coupling of Pyridylhalide 9a-g and Organozinc Reagents 6, 7 and 8

entry	substrate	Zn reagent"	catalyst	% yield	product
1	N 9a	6	Pd(dppf)Cl ₂	92	OHC N 5a
2	Gi -	6	1:1 Pd/(<i>t</i> -Bu) ₃ P*	91	
3		7	1:1 Pd/(<i>t</i> -Bu) ₃ P ^b	<5	
4		7	Pd(dppf)Cl ₂	89	
5		8	Pd(dppf)Cl ₂	85	
6	CI 9b	6	Pd(dppf)Cl ₂	82	OHC N 5b
7		6	$1:1 \text{ Pd/}(t\text{-Bu})_{\scriptscriptstyle 3}\text{P}^{\scriptscriptstyle b}$	72 (8:1 5b/11)	
8		7	Pd(dppf)Cl ₂	85	
9	N Me 9c	6	Pd(dppf)Cl ₂	87	OHC N Sc
10		6	Pd(dppf)Cl ₂	90	
11		7	Pd(dppf)Cl ₂	80	
12	N NO ₂ 9d	6		81	OHC NO ₂ 5d
13		6	$1:1 \text{ Pd/}(t\text{-Bu})_{3}P'$	73	2
14	CI N 9e	6	$1:1 \text{ Pd/}(t\text{-Bu})_{3}\text{P}^{b}$	58 (4:1)	OHC OHC OHC OHC N
15		6	Pd(dppf)Cl ₂	36 (5e only	
16	N Br 9f	6	Pd(dppf)Cl ₂	70 (1:1)	OHC OHC OHC OHC OHC OHC
17		6	$1:1 \text{ Pd/}(t\text{-Bu})_{3}\text{P}^{b}$	79 (11only)	31
18		7	Pd(dppf)Cl ₂	70 (1:1)	
19	CI 9g	6	Pd(dppf)Cl ₂	30	OHC N 5g
20		6	$1:1 \text{ Pd/}(t\text{-Bu})_{_3}\text{P}^{_b}$	76	
21		7	$1:1 \text{ Pd/}(t\text{-Bu})_{3}\text{P}^{b}$	<5	
22		7	Pd(dppf)Cl ₂	<5	

^a Organozinc reagents were used in the following stoichiometry: **6** (0.6 equiv), **7** (0.35 equiv), and **8** (0.27 equiv). ^b "1:1 Pd/(t-Bu)₃P" was prepared from a 0.5:1 ratio of Pd₂(dba)₃ to (t-Bu)₃P.

catalyst system derived from $(t\text{-Bu})_3\text{P/Pd}_2(\text{dba})_3$.²⁴ As discovered by Fu, the $(t\text{-Bu})_3\text{P:Pd}$ ratio is an important parameter.²⁵ For diorganozinc **6**, a 1:1 ratio gave significantly better yields than commercially available Pd(P($t\text{-Bu})_3$)₂.²⁶ Use of Pd₂(dba)₃ with monodentate phosphine ligands such as P(t-Bu)₃, P(t-Bu)₃, P(t-Bu)₃, P(t-Bu)₃, P(t-Bu)₃, P(t-Bu)₃, Ph₃, P(2-furyl)₃, and P(t-Bu)₃ failed to promote the reaction of halopyridines or haloaromatics

with zincates **7** or **8** (Table 1, entries 3 and 21). Bidentate ligands, such as dppf, dppe, dppp, and dppb, promoted the Pd-catalyzed reaction with zincates **7** and **8**, but dppf was superior.

We also examined a series of aryl bromides in the Pd(dppf)Cl₂-catalyzed cross-coupling with organozinc re-

Org. Lett., Vol. 4, No. 3, 2002

⁽²⁴⁾ Dai, C.; Fu, G. C. *J. Am. Chem. Soc.* **2001**, *123*, 2719–2724. (25) Littke, A. F.; Dai, C.; Fu, G. C. *J. Am. Chem. Soc.* **2000**, *122*, 4020–4028.

⁽²⁶⁾ Coupling of $\bf 6$ and $\bf 9g$ with (t-Bu) $_3\text{P/Pd}_2(\text{dba})_3$ (2 mol % Pd) at 0.5:1, 1:1, 2:1, and 3:1 (ligand: Pd) gave 70%, 76%, 20%, and 20% yields, respectively.

Table 2. Pd(dppf)Cl₂-Catalyzed Preparation of 5-Substituted Arylfurfurals from Aryl Halides **12a**—**f** and Organozinc Reagents **6**, **7**, and **8**

EtO
$$X+2$$
 $X+2$
 $X+2$
 $X+2$
 $Y=0$
 $Y=0$

entry	substrate (R)	organozinc reagent ^a	yield (%) ^b
1	12a (H)	6	77
2		7	76
3		8	71
4	12b (Me)	6	88
5		7	78
6		8	76
7	12c (OMe)	6	85
8		7	79
9		8	75
10	12d (NO ₂)	6	75
11		7	62
12		8	41
13	12e (CN)	6	84
14		7	81
15		8	61
16	12f (CO ₂ Et)	6	84
17	7	7	63
18		8	56

 $[^]a$ Organozinc reagents were used in the following stoichiometry: **6** (0.6 equiv), **7** (0.35 equiv), and **8** (0.27 equiv). b HPLC assay yields base on an authentic standard of each product.

agents **6**, **7**, and **8** (Table 2). Making optimal use of the transition metal reagent $ZnCl_2$ via complex **8** is more efficient than standard Negishi couplings; however, it suffers from less functional group tolerance (Table 2, entries 12, 15, and 18).

Spectroscopic evidence for zincate and higher order zincate formation was relayed to a simpler system generated from PhLi. ¹³C NMR data indicates a clear trend (Table 3) in that a low-field shift in the ipso Ph-M carbon occurs with increasing electron density in the aromatic ring.²⁷ In the crosscoupling reaction with 2-chloropyridine, Ph₃ZnLi (0.35 equiv) and Ph₄ZnLi₂ (0.27 equiv) transferred all aryl groups

Table 3. Synthesis of 2-Phenylpyridine (**13a**) via Pd(dppf)Cl₂-Catalyzed Coupling of Ph-M with 2-Chloropyridine (1.2 equiv)

entry	$\delta_{ m Ph}$ (ppm) a	Ph-M (equiv)	yield (%)
1	187.4	PhLi (1.0)b	<5%
2	159.4	PhZnCl (1.0)	98
3	161.8	Ph ₂ Zn (0.6)	95
4	168.9	Ph ₃ ZnLi (0.35)	100
5	170.5	Ph_4ZnLi_2 (0.27)	99

 $[^]a$ Ipso Ph carbon (M-C) 13 C data in THF- d_8 , with reference to C-2 THF signal at 67.57 ppm. b PhLi was prepared from bromobenzene and s-BuLi.

in nearly quantitative yield. To address whether the reaction is catalytic in Zn(II), $ZnCl_2$ (10 mol %) was added to PhLi, followed by 2-chloropyridine and Pd(dppf)Cl₂ (2 mol %). Only a 37% yield was attained, indicating the initial formation of Ph_4ZnLi_2 followed by transfer of all four groups.²⁸ Interestingly, slow addition of PhLi to a THF solution of $ZnCl_2$ (10 mol %), 2-chloropyridine, and Pd(dppf)Cl₂ (2 mol %) produced an 82% yield of **13a**.²⁹

An extremely efficient process for the synthesis of 5-aryland 5-pyridyl-2-furaldehydes has been demonstrated. The four-step, one-pot procedure takes advantage of using substoichiometric quantities of ZnCl₂. A triorganozincate intermediate successfully transfers all three groups in the crosscoupling reaction. Thermally stable higher order zincates (e.g., Ph₄ZnLi₂) transfer all four groups. Efforts to understand and find further application of this chemistry are ongoing.

Acknowledgment. The authors thank Dr. Phil Pye, Dr. Chris McWilliams, and Dr. Anthony O. King and for insightful discussions. We also thank Dr. Ziqiang Guan for HRMS data.

Supporting Information Available: Experimental procedures and characterizations for all new compounds. This information is available free of charge via the Internet at http://pubs.acs.org.

OL0170612

378 Org. Lett., Vol. 4, No. 3, 2002

⁽²⁷⁾ This trend is opposite for aliphatic protons, see: Uchiyama, M.; Koike, M.; Kameda, M.; Kondo, Y.; Sakamoto, T. *J. Am. Chem. Soc.* **1996**, *118*, 8733–8734.

⁽²⁸⁾ The reaction appears to stall, and added Pd catalyst failed to produce more product.

⁽²⁹⁾ The PhLi (1 equiv) was added over 1 h at room temperature to 35 °C. The reaction was then aged at 60 °C for 2 h. Biphenyl (9%) was the only byproduct.